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Both the incompressible and supersonic laminar flow over a small, unsteady hump 
are considered. The Reynolds number is assumed large, and the analysis is based upon 
triple-deck theory. In  the incompressible caae disturbances tend to grow downstream, 
as a result of triggering the Tollmien-Schlichting mode of instability. For the 
supersonic case the flow disturbances tend to decay downstream across the entire 
frequency spectrum. However, for sufficiently large humps a seemingly catastrophic 
failure of the governing equations may occur, our results suggesting that this is caused 
by an inviscid, short-scale, Rayleigh type of instability. 

1. Introduction 
In  this paper we consider the problem of the interaction between an otherwise 

steady laminar boundary layer on a flat plate, and a small unsteady surface distortion 
of the plate. This problem was posed by Duck (1978), hereinafter referred to as I, 
who solved the problem asymptotically in the limit of increasingly fast oscillations 
of the perturbation. This work in turn was baaed on the (completely) steady work 
of Smith (1973). The three-dimensional analogue to I was considered by Duck (1981). 

We shall keep the formulation of the problem to a minimum - a full description 
is given in I. Suppose U, is the free-stream velocity, L some characteristic lengthscale 
(typically the distance between the hump and the leading edge of the plate), v the 
kinematic viscosity, and 1 /52  is a characteristic timescale associated with the 
unsteadiness. We may now define two non-dimensional parameters : first, a Reynolds 
number R = U, L/v,  which is assumed large; and, secondly, Po = [U,/52L)i, an 
unsteadiness parameter (associated with the Strouhal number). 

Taking our origin of coordinates suitably near the wall distortion, we define our 
dimensional coordinateslz, Ly parallel and perpendicular to the streamwise direction 
respectively. 

Using the non-dimensionalization of I for the dependent variables allows us to write 
the Navieetokes equations in the form 

1 au 1 
+(U’V)U = -Vp+-VZu, Eat R 

v * u  = 0, (1.2) 

As in much multi-layered (or ‘triple-deck’) analysis, we find it helpful to define 
where u = (u, w) is the velocity vector, and p the pressure. 

a small parameter, based on the Reynolds number, namely 

€ = Rb. (1.3) 
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given by 
Following I (and other triple-deck work) we suppose that the distortion profile is 

with I y = €6hP(X, t )  , 

x = XI.”, 

and where h F ( X ,  t )  and X are generally O( 1) quantities. 

Reynolds number). Of these perhaps the most interesting was the first considered: 
In  I, three distinct regimes of Po were considered (each based on a power of the 

P o  = 4, B = W), (1.5) 

which (with Y = y / 8  - hF(X,  t)) yields the following nonlinear boundary-layer 
problem : 

(1.6) 
1 
- ~ y , + ~ y ~ ~ y - ~ ~ ~ y y = - - p x + ~ y y y ,  
p” 

where E ~ @ ( X ,  Y , t )  is the non-dimensional stream function, and e2P(X,t) is the 
non-dimensional pressure. The boundary conditions which must be applied to (1.6) 
are 

‘y(Y = 0) = Y Y ( Y  = 0) = 0, ( 1 . 7 ~ )  

Yy+ Y + A ( X , t ) + A P ( X , t )  as Y-too. (1.7b) 

(Here we have assumed that a simple renormalization of the variables has been 
carried out in order to set the value of the wall shear of the oncoming, undisturbed 
boundary layer to unity). A ( X ,  t)  is a displacement function which is to be determined. 
The final condition that closes the problem arises from the ‘upper deck’, and in the 
case of incompressible flows is 

We also propose to study supersonic flows, in which case the following relationship 
applies 

P(X,  t )  = -A,(X,  t ) .  (1.9) 

In I the limit of B+O was taken (/3+ 00 leads to a quasi-steady solution, based 
on the steady solution of Smith 1973). In this paper we concentrate on the ‘order-one ’ 
problem. 

We believe that a study of the system (1.6) is important for the following reasons. 
Physically we may interpret the problem as modelling the well-known vibrating-ribbon 
experiment used in investigating boundary-layer stability (and transition), one of the 
most important (and vexing) questions in fluid mechanics. It has been shown by 
Smith (1979a,b) that a fully rational description of linear and weakly nonlinear 
stability theory (see Lin 1955 and Stuart 1960, Watson 1960 respectively) may be 
expressed compactly within the context of triple-deck theory, similar to that 
described above. In  the case of weakly nonlinear theory (for example Smith 1979~)  
the analysis applies to small disturbances which are very slightly supercritical 
(according to linear theory). This weakly nonlinear theory predicts that nonlinear 
effects have a stabilizing influence on the flow in the immediate vicinity of the neutral 
curve. One of the aims of this paper is to demonstrate this effect numerically, whilst 
at  the same time investigating ‘order-one’ disturbances (on the scale of the lower 
deck), not necessarily very close to a neutral point. 
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The inherent connection between a harmonic oscillator on a steady viscous flow 
and the hydrodynamic-stability problem (in channel flows) has recently been verified 
by Bogdanova & Ryzhov (1983), who also based their analysis on multi-layered 
arguments. Using linearized analysis, these authors showed how, above a critical 
frequency of oscillation, the (lower-branch TollmienSchlichting) waves triggered by 
the oscillator cease to decay downstream. 

Assuming this connection between a forced oscillation on the boundary layer and 
boundary-layer stability, in this paper we study the externd-flow problem analogous 
to that of Bogdanova & Ryzhov (1983). However, in our case we study the fully 
nonlinear system (1.6). As h+O we may expect to retrieve the results of a linearized 
analysis, whilst it is the h = 0(1 )  results that are likely to be the most interesting. 

Finally, we note that we shall be focusing our attention on regions in parameter 
space fairly close to the lower (TollmienSchlichting) branch. It is this branch (rather 
than the upper branch) that is likely to be of more practical importance since it is 
encountered first in practical situations. 

The layout of the paper is as follows: in the next section we consider the linearized 
solution (h + O )  of (1.6), which will guide our investigation of the full, nonlinear system 
(using the method described in 93). Our results are presented in 94, and our 
conclusions are given in 95. 

2. Linearized solutions 
We first seek solutions of (1.6) as h+O, assuming F(X, t )  takes on a simple periodic 

form in time. This analysis is likely to give us a good indication of many of the features 
of the nonlinear solutions to be obtained later. 

We first differentiate (1.6) with respect to Y, to eliminate the pressure term, 
obtaining 

1 
- 'Y*Yt+ 'YY 'YXYY- 'Yx 'YYYY = 'YYYYY. 8" 

Next, we define a (perturbation) shear stress .i = ( YYy - l ) / h .  If we then neglect 
the nonlinear terms (O(h*)) in (2.1), the resulting system is 

1 
-.it+ Y.ix-.iyy = 0. 
P 

If we also neglect transients, leaving a purely time-periodic solution, then we may 
write 

7^= 7eit+c.c., F =feit+c.c., (2.3) 
._ 
17 -+ Y7,--.iyy = 0. 
P 

where ;? is described by 

Taking the Fourier transform of (2.4), with respect to X, gives 

where 
co 

7*(k,  Y) = JPrn 7 ( X ,  Y) ePikX dX. 
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Imposing the conditions (1.7) yields the following solution for ?*, 

ikAf* Ai i { (ik): ( Y + &)} 
;i* = 

(ik):AJm Ai(c)d[-(ik)iAi’ 
(i k)i/ppk 

(where P* = A(k) A* is the transform of the pressure/displacement relationship). 
If we use complex-variable methods then the inversion of this expression, in 

general, comprises two distinct contributions. The first comes from integrals along 
either side of any branch cuts, which is the continuous-spectrum component of the 
inversion. For the purposes of (2.7), we must have 

-$71 < arg (k) < 471 (2.8) 

in order that the Airy function is bounded as Y + co, yielding one branch cut. For 
the incompressible case, we also have branch cuts along both imaginary axes, since 

A(k) = k, Re(k) > 0, 

=-k ,  Re(k)<O. 
( 2 . 9 ~ )  

For supersonic flows A(k) = -ik, for all k. (2.9b) 

The second and discrete contribution in the inversion of (2.7) arises from the 
residues from any poles in the complex-k-plane. We shall see that these are crucial 
iq the present problem. These poles occur whenever we have 

(ik)iAJ 00 Ai(c)dc= .if[--. (ik)f 

(i k)t/P’k 
(2.10) 

Equation (2.10) was solved for both the supersonic and incompressible cases for 
a range of B > 0, and the roots in the complex plane are shown in figures 1 and 2 
respectively. Note that Zhuk & Ryzhov (1978), Terent’ev (1978) and Ryzhov & Zhuk 
(1980) have considered various aspects of the supersonic problem, but do not appear 
to have treated this aspect in any detail. 

There are a number of interesting features on these figures. First, in the supersonic 
case, it appears that, if k = - k, + iki (k,, k, > 0, real), is a root in the second quadrant, 
then so too is k = - k, + ik,. Also, for a given value of p ,  then there exist many roots 
of this type in the second quadrant (just the first three are shown in figure 1). Further 
the line Re (k) = -1m (k) in this quadrant is itself a (continuous) line of roots; 
indeed, it appears that, generally, for a given value of /3 there exist many values of 
k satisfying (2.10) on this line (these features are confirmed below). 

We may study both these sets of roots, asymptotically, following the work of 
Ryzhov & Zhuk (1980). 

Defining, for convenience, 

(2.11) 

then (2.10) may be written 

- (ik): Jcm Ai (g) dc = Ai’ (g). (2.12) 

For this (supersonic) case, we may show that as 1 6 1 + co, (2.12) possesses an infinite 
number of roots on and in the vicinity of arg g = R, corresponding to arg k = -471. 
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FIGURE 1. Roots of (2.12), /3 prescribed, supersonic case. 

(2.13) 

where 8' 4 1, and hence we must have (for /3 real) 

k = I k I e-ih-$& (2.14) 

As I 6 I + ao, we may use the asymptotic behaviour of the Airy function, close to the 
negative real axis of 5, to give the following asymptotic form for (2.12) 

(2.15) 

First, assuming 8' = 0, i.e. considering roots lying on the line arg (k) = -in, then 
the imaginary part of this equation is identically satisfied, whilst the remaining (real) 
equation is 

I[li cos [i I Clt+$] = -d I k It. (2.16) 

As I C: I + 00, I k I = o( I 5 I&), the solution of this equation is 

I f 1: cos [i I Clt+$c]  - i8'1 If sin [i I 3 It +$I = - x i  I k 14 [l - 2i8'1. 

I 6 I = [@n -@]!, n positive, integer, and large, (2.17) 

or 1 k I f p  = [ ~ I J c - ~ c ] - ~ .  (2.18) 

This then indicates that for a given value of /3 there exist an infinite number of 
I k I satisfying (2.12) on the line arg (k) = -in. 

Let us now consider the case when 8' =+ 0. Taking real and imaginary parts of (2.15) 
yields (2.16) (again), together with 

IgIisin(iICIi+in) = - 2 b I k I j .  (2.19) 
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-0.4 

FIGURE 2. Roots of (4.21), B prescribed, incompressible caw. 

If we again take the limit I [I-. co, and solve (2.16) in conjunction with (2.19), then 

1 kl  = x-i[3n~-Fn]i, 

p” = d [3nn-@]-f,  n positive, integer, and large. (2.20) 

8’ remains arbitrary. This explains the occurrence of the roots k,, on figure 1. 
In  addition to these roots on and close to arg k = -$n, there also exists a solitary 

root in the fourth quadrant, which approaches k = -0.82723 as B-. co. It is the pole 
at this point that is responsible for the upstream influence in steady, supersonic, 
triple-deck flows (e.g. Stewartson & Williams 1969). Note that all these (discrete) 
contributions to the solution decay exponentially downstream. 

Let us now consider what turns out to be the more interesting case, namely the 
incompressible example. In  this case the equation determining the roots, namely 
(2.10), becomes 

(ik); (k2)f Jcm Ai (C) dC = Ai’ (c), (2.21) 

with 5 defined by (2.11). 
Equation (2.21) is the same equation obtained by a number of authors (e.g. Smith 

1979a; Lin 1955) in the context of the hydrodynamic stability of boundary layers; 
however, these authors concerned themselves with the point of neutral stability, and 
hence required k to be real. The analogous system to (2.21) for channel flows was fully 
investigated by Bogdanova & Ryzhov (1983). Indeed, these latter results provided 
a useful check for the root-solving routine used by the author. 

Figure 2 illustrates the roots of (2.21), and indicates that there exists just one 
(complex) value of k for a given value of B, in contrast to the non-uniqueness found 
in the supersonic case. The crucial feature of figure 2 is the cross-over of the negative 
real-k-axis a t  B = 8, % 0.660, k = k, % - 1 ,OOO. The reason for the importance of this 
is as follows. Ordinarily, if one is inverting a transformed variable, say ?*, using 
complex-variable methods, then one takes a contour lying entirely within the lower 
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half of the k-plane to evaluate ? for X < 0, whilst one takes a contour lying entirely 
within the upper half of the k-plane to determine 7 for X > 0. Consequently any poles 
in the lower half-plane contribute to the X < 0 solution, whilst any poles in the upper 
half-plane contribute to the X > 0 solution. This is the case in the present problem 
for /3 > /3,. However, as /3+/3, + , we see from figure 2 that a pole is approaching the 
negative real axis (from above), giving rise to a solution which, downstream, oscillates 
and decays progressively more slowly. If /3 = Be, the solution in fact is purely 
oscillatory as X - t  00. If we were to use our previously described criterion for inverting 
?*, then, as /3 is reduced below Be, the solution as X + ~ O  would decay (without 
oscillation), whilst as X+- 00, the solution abruptly starts to oscillate. On physical 
grounds this description of the flow appears unlikely, owing to this discontinuity in 
solution. 

As a result, we must redefine our choice of contours for /3 < 8,. Instead, for X > 0, 
we choose a contour as before, except with a detour into the lower half of the 
complex-k-plane to include this pole. This then excludes any contribution from this 
pole for X < 0. The result of this is that the solution varies continuously with /3, as 
/3 reduces below Bc, and most importantly the solution grows exponentially (and 
oscillates) as X+ 00. 

The connection with the linear hydrodynamic stability of the boundary layer is 
now clear. /3 = /3, corresponds to the point of neutral stability. If /3 < /3, the unstable 
modes are excited by the hump oscillation, and lead fo growing Tollmien-Schlichting 
waves downstream. We may state the condition for instability as follows (if 
k = kr+iki): we require that i3kr/i3/3 > 0 when /3 is such that k, = 0 (we may also 
include the case i3kr/d/3 < 0 when /3 is such that ki = 0, to be unstable, although there 
are no examples of this type of instability in our results). This then classifies all the 
supersonic modes as being stable, even though modes of k, >< 0 are found. 

The inversion procedure outlined above leads to the following contribution to the 
perturbation wall shear for X > 0, namely 

- (2.22) 
- eikoXP(ko) Ai ( f )  ki 

7discrete - m 

t 
(ik,P{-fS 

where k, is the root of (2.21) for the given value of /3, and, if /3 < /3,, then k, lies in 
the third quadrant of complex-k-plane. Here we define 

(ik,p 
6 = BZk, (2.23) 

Note that there can be no solution in the vicinity of the line arg (k) = -$ (unlike 
the supersonic case) since the left-hand side of (2.21) on this line is purely imaginary, 
whilst the right-hand side is purely real. 

A further point of interest is the behaviour of k, as B + O .  Using the asymptotic 
behaviour of Airy functions yields 

k, N -- j + g e + .  (2.24) 

Consequently, as /3+0 the curve in figure 2 approaches the negative real axis from 
below. In  this limit the oscillations downstream grow more slowly (and have smaller 
wavelength), and so are generally of smaller amplitude. We expect the asymptotic 
results of I to hold upstream, and for X < O( - 1/p) l n P (  - 1//3)) downstream. This 



472 P. W .  Duck 

requirement arises by demanding that the discrete contribution to  the solution 
remains small. 

Finally, the local maximum and minimum which are seen to occur in figure 2 a t  
Re (k) x -3.5 and Re (k) = - 4  respectively do appear to be genuine features of the 
curve. 

We now go on to consider fully nonlinear solutions of (1.6) ; we shall be particularly 
interested in the effect of the nonlinearity on the waves predicted by linearized theory 
for the incompressible case. 

3. Numerical scheme 
We now consider a fully numerical approach to the solution of system (1.6)-( 1.9). 

There are two main difficulties associated with the system (similar difficulties arise 
with the analogous steady problems). The first is the treatment of the 
pressure/displacement-function condition which demands, generally, an additional 
level of iteration in the computation. The incompressible condition (1.8) has been 
treated (in steady situations) by a number of authors, including Jobe & Burggraf 
(1974) in the context of trailing-edge flows and more recently by Veldman (1979) using 
a particularly efficient procedure. The supersonic condition (1.9) has also been treated 
by several workers in steady situations, for example Daniels (1974) (in the context 
of wake flows) using a method akin to a shooting technique. Rizzetta, Burggraf & 
Jenson (1978) developed a more reliable method that eliminated the need for this 
often troublesome and tirne-consuming procedure, but that  still involved fairly 
lengthy computing times. 

The second difficulty we incur will be our requirement for the correct treatment 
of reversing flow, if i t  occurs. Again, a number of numerical techniques are now 
available, but generally the solution procedure is further complicated. Possible 
schemes include those of Williams (1975) and of Rizzetta et al. (1978). 

All the schemes mentioned above are based on adaptations of (now) fairly 
conventional finite-difference techniques. (In a recent paper by Smith 1984, which 
appeared during the course of preparation of this paper, there is a brief description 
of a finite-difference scheme to tackle unsteady problems of the present class using 
finite-difference techniques.) Instead we shall prefer to  use an extension of a spectral 
method developed for steady flows by Burggraf & Duck (1981), and later used by 
Duck (1984) and Duck & Burggraf (1985). The idea behind this method stems from 
the linearized ( L O )  treatment described in the previous section, the primary 
difference being that the O(h2) terms are retained (i.e. h is not assumed small), and 
the solution is then obtained through iteration. Much of the success of the method 
is undoubtedly a result of the previously discussed linearized solution giving 
remarkedly good estimates for the nonlinear solution, even for h = O(1). This 
technique, which is based on taking the Fourier transform of the equation in the 
streamwise direction, possesses two important advantages over more conventional 
finite-difference schemes. First, the method canincorporate any pressure/displacement 
relationship extremely easily and, secondly, it treats reversed-flow regions correctly, 
without the need for any kind of approximation or awkward adaptation as is required 
in conventional schemes. The scheme does have some drawbacks. For example it does 
not appear to  be a simple matter to  deal with mixed boundary conditions, such as 
encountered in trailing-edge regions. Further, difficulties can arise with discontinuous 
or unbounded wall distortions, since these can lead to  singularities and slow decay 
in the (transformed) solution, which the scheme would have difficulty treating 
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accurately. However, since our main concern in this paper will be the effect of 
unsteadiness, rather than the detailed effects of surface geometry on the flow, we shall 
restrict our attention to smooth, bounded surface distortions, which result in flow 
disturbances which the transform method may treat relatively easily. We next 
describe the details of the procedure. 

We differentiate (1.6) with respect to Y to obtain (2.1). Next we define a 
perturbation shear stress, this time given by 

7" = Yyy-l, (3.1) 

o =  Yy- Y ,  (3.2) 

8 = - Y x .  (3.3) 

together with perturbation velocity components 

The system (2.1) may now be written in the form 

(3.4) 

For numerical expedience later, let us transform from the Y-coordinate, to the 

1 
-Tt+ Y7"x-7"yy = - ( O f x +  Ey). 
P 

7-coordinate by means of 
y = f(7). (3.5) 

O < Y < o o  a s O < 7 < 1 .  (3.6) 

We shall restrict our attention to mappings that give 

This immediately implies one useful property, namely that the infinite- Y-domain 
is now reduced to a finite domain in 7. 

Substituting (3.5) into (3.4) gives 

where we now have the following definitions 

The next step is to Fourier transform (3.7) with respect to X, yielding 

=R*(k, 7, t ) .  (3.10) 

Here an asterisk again denotes a transform variable, for example 
m 

7"*(k, 7, t )  = [ 7"(X, 7, t)e-ikx dX. (3.11) 
J-m 

The boundary conditions to be applied to (3.10) are that 

8*(7 = 0) = 0*(7 = 0) = 0 (3.12) 

together with f * + O  as 7+1.  (3.13) 
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Notice that (for the purposes of the right-hand side of (3.10)) 

I (3.14) 

We still require to implement (1.7b) as 7+= 1, together with the appropriate 
pressure/displacement relationship, either ( I  .8) or (1.9). Suppose that the Fourier 
transform of this may again be written as 

P* = A(k) A*, (3.15) 

then A(k) = -ik for supersonic flows, (3.16) 

whilst A ( k )  = (k2)t for incompressible flows. (3.17) 

From (1.7b) we find that, as q + l ,  

6 f(7) 7"*(7) d7 +A* + hP*. (3.18) 

We still require one further condition to enable us to eliminate the pressure. This is 
derived from evaluating (1.6) on Y = 0, and using the wall boundary conditions, to 
give 

cl = ikP*. 
f ( 7 )  q=o  

Combining (3.15), (3.18) and (3.19) results in a final condition 

(3.19) 

(3.20) 

We now seek a numerical solution to (3.10), subject to (3.13) and (3.20). We shall 
solve for 7"*, a t  times given by t = (i-1)At (i = 1,2, ...), at J 7-stations given by 
7=(j - l )A7,suchthstAq=q, / (J- l ) ,  1-7, 4 l , j =  1,2, ... atKk-pointsinthe 
range kmin Q k Q k,,,. The solution procedure is similar to that of Burggraf & Duck 
(1981) and Duck (1984) (although these authors considered steady problems, and also 
did not use the transformation (3.5)). 

At each (k,7, t-iAt)-station, (3.10) is approximated by 

1 
- [7"*(k ,7 , t ) - f*(k ,7 , t -At ) ]  
At p" 

+f ik~(7 ) [7"*(k , r , t )+7"*(k ,7 , t - - t ) l  

1 - {7"*(k, 7 + AT, t )  - 27"*(k, 7, t )  + f*(k, 7 -AT, t)  
2(A7)2 [ f (7)I2  

+ 7"*(k, 7 + 67, t - At) - 2f*(k, 7, t - At) + 7"*(k, 7 - A7, t - At)) 

for A7 Q 7 < 7, - A7. Notice the error of this scheme is O((At)2 +  AT)^). 
The condition (3.20) was approximated using second-order (three-point backward) 

differencing for the derivative of 7"*, and trapezoidal quadrature for the integral. 
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Notice that, although f(7)  becomes algebraically large as 7+ 1,  ?* decays expo- 
nentially in this limit, and so the integrand in (3.20) decays as q+ 1. Equation (3.20) 
was evaluated at time t ,  rather than at time t -+At as was used for (3.10). 

At each ( k ,  t)-station with A7 < 7 < ?loo -A7, we have a tridiagonal system to solve, 
but with a full bottom row corresponding to (3.20). Gaussian elimination may be 
employed to solve for each ?(q). Notice one extremely useful property, namely 

?*( - k ,  7, t)  = complex-conjugate {TP(k, 7, t)}, (3.22) 

a result which enables us to halve the amount of computing required. We chose to 
consider just k < 0. 

The overall procedure was then as follows: using the values of ?* at the previous 
timestep, the right-hand side of (3.21) was evaluated at all ( k ,  q)-stations by inverting 
7"* and ik?* and using the fast-Fourier-transform method of Cooley t Tukey (1965), 
to yield the physical variables 0, f X ,  p, f7. R ( X ,  7, t )  was then evaluated in physical 
space, before transforming back into transform space, again by means of the 
fast-Fourier-transform technique. This system for evaluating the right-hand side 
of (3.21), although appearing to be rather cumbersome, was used in preference to 
evaluation of a convolution integral, which in fact involves considerably more 
operations than our method. The system was then solved by sweeping through all 
the k-stations (solving along lines of k = constant), and the right-hand side was then 
re-evaluated using the method outlined above. The process was then repeated until 
convergence. This was taken to be when the maximum change in any of the pressures 
(obtained using (3.19)) was less than lo-'. Once convergence was achieved, the 
calculation was carried on to the next timestep, and the overall procedure repeated. 
Note that, at the very first timestep, for the first iteration we set R ( k ,  7 ,O)  = 0 for 
all k , q .  Once convergence had been achieved the results were finally inverted by 
means of trapezoidal quadrature. 

The particular version of the fast Fourier transform used required a slight bias in 
k,  namely k,,, = - kmtn-Ak, and we assumed values for k > k,, to be equal to 
values for k < kmin, namely zero. However the errors involved with this are expected 
to be insignificant, owing to the generally rapid decay of the transformed solution 
as I k I + ao. A further point is that the range in k may be interpreted as a (physical) 
range in X, namely 

-+(K+ 1) AX < X < +(K+ 1)  A X ,  (3.23) 

as kmin < k < - k,,,-Ak, assuming K is even, and where 

(3.24) 

A much fuller account of these and related matters is given by Burggraf & Duck 
(1981). 

4. Results 
Generally, we chose 

with 0 < 7 < 0.95. It was found that this transformation gave considerably more 
accurate results for the same number of points than control computations carried out 
using an untransformed (i.e. f(7) = 7) grid. 

16 F L Y  1w 
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Further, we generally took the following perturbation shape 

0, t < 0, 

1 +X2'  
P ( X ,  t )  = {- sin t t > 0 ,  

corresponding to an impulsively started distortion. Note that the Fourier transform 
(with respect to X )  of this F ( X ,  t )  is 

0, t < 0 ,  

ne-lkl sint, t > 0 
F*(k, t )  = (4.3) 

(assuming k to be real). 
This impulsive start to the movement of the distortion does induce a singular 

behaviour in the solution for small t ,  and results in a thin boundary layer of thickness 
O(t4). However, during this phase of the motion the streamwise perturbation velocity 
is generally O(t2 ) ,  and consequently this singular start-up process was found to have 
little effect on the accuracy of results at later times. (It would be possible to 
incorporate this singular behaviour into a numerical scheme ; although routine, it 
would complicate our method further.) 

4.1. Supersonic case 
Figure 3 (a, b) shows the perturbation wall shears (fw) and the perturbation pressure 
distributions for the example h = p = 1.  The solid curve represents nonlinear results 
obtained with the following grid: 

kmin = - 14.1 1 ,  k,,, = 13.89, K = 256, 

with J = 25, and At = 0.005. 

We shall refer to this as grid I. This particular computation took approximately 14 
hours of CDC 7600 time in order to reach t = 311. These results were checked by a 
control computation carried out on a coarser, less-extensive grid, namely 
kmin = -7.22, k,,, = 6.88, K = 64, J = 25, At = 0.005. We shall refer to this as 
grid 11. For the example shown in figure 3 (a, b), the results obtained on grids I and I1 
were identical to within 1 yo and were indistinguishable graphically (a certain amount 
of numerical experimentation with J was also carried out, and it was deemed that 
J = 25 gave similar accuracy). In order to gauge the amount of nonlinearity in the 
solution, the linearized solution was generated on grid 11, by setting R* = 0 a t  all 
points, for all times. Note that no iteration is necessary for these linearized results. 
Discrepancies only between the linear and nonlinear solutions are shown, this 
discrepancy being indicated by the broken lines on figure 3 (a, b). The linear solution 
is only shown at t = in and t = 3n, since, to 2 places of decimals we found that by 
t = $11 we had already obtained 

P(t+x)  = - P ( t ) ,  f w ( t + l l )  = - f w ( t ) ,  (4.4) 

indicating that the transient part of the solution, due to the impulsive start, decays 
very rapidly with t .  

The second example shown is a rather more challenging case of h = 5 ,  /? = 1 (a 
somewhat larger wall perturbation) ; these results are shown in figure 4 (a ,  b), and were 
produced using the (coarse) grid 11. Notice, in particular, how at t = in there appears 
to be a pressure plateau developing in the region of reversed flow (7" < - l) ,  a 
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FIGURE 3. (a) Spatial distribution of perturbation wall shear; (b )  spatial distribution of 
perturbation pressure : h = /9 = 1, supersonic case. 

phenomenon observed with steady flows with large separated regions. It appears that 
the reversal of the flow occurs quite regularly here. A further feature observed in 
figure 4(a), which is commonly observed in steady flows of this class, is that the effect 
of the nonlinearity is to reduce the magnitude of the reversed flow, compared with 
that which might be expected to occur from the linearized FW distribution (see 
figure 3a). 

The next example tackled was h = 7.5, /3 = 1. Results for the perturbation wall 
shear for this case are shown in figure 5(a,b) ,  at six different times. These results 

18-2 
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FIGURE 4. (a) Spatial distribution of perturbation wall shear; (a) spatial distribution of 
perturbation pressure: h = 5, /3 = 1 ,  supersonic caae. 

we computed on a third grid, grid 111, with kmi, = - 14.22, k,,, = 13.88, K = 128, 
J = 25, At = 0.005. These results illustrate a feature not readily observable in any 
of the previous sets of results. After t = 4, the shear distributions are beginning to 
exhibit a progressively severe minimum, up to t = 5. Thereafter this minimum 
decreases very rapidly in magnitude, and is swept downstream as a decreasing- 
amplitude wave. The behaviour of the transformed (i.e. Fourier) variables (which 
are not illustrated) is also interesting around t = 5. The decay as k+- co became 
progressively slower, and then, as the shear minimum subsided, the decay improved 
drastically. The results for all the other variables exhibited a similar type of 
behaviour. 
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- 3 1  
FIQURE 5(a,b) Spatial distribution of perturbation wall shear, h = 7.5, /3 = 1, supersonic CW. 

The most severe height tackled was h = 10 (with B = 1, still). Results for the 
perturbation wall shear, obtained on grid 111, are shown in figure 6. Up to t 9 2.50 
no particularly unexpected phenomena occur. A t  t = 2.75 several (mild) oscillations 
begin, and, by t = 2.875, these have grown into quite severe oscillations. Associated 
with this behaviour, the Fourier variables were seen to no longer decay as k+- co. 
As a result the computation became extremely sensitive to the choice of the range 
of k (a control calculation using grid I1 was also performed). This type of apparent 
breakdown of the governing equations (which may involve a corresponding breakaway 
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- 1  

FIQURE 6. Spatial distribution of perturbation wall shear, h = 10, /I = 1, supersonic case. 

of a free shear layer) has been found in other unsteady situations by Duck (1985) 
in pulsatile internal flows, and by Tutty & Cowley (1985). Unlike the present problem, 
in both these papers the situation was slightly simpler, being ‘non-interacting ’, i.e. 
with A = 0. The latter authors also conjectured that the genesis of the breakdown 
was a short-wavelength (i.e. I k I % 1) Rayleigh-type instability, associated with 
inflection-type profiles, and our results (in k-space) do indeed point to a very rapid 
growth rate as k+- 00, at certain times throughout the cycle. 

Our computation for h = 10 in fact continued (confirming the robust nature of the 
numerical scheme), up to t = 4.75, when it eventually failed to converge within a 
specified number of iterations. After t = 3 the oscillations in the distributions began 
to decrease in amplitude (this was accompanied by a restoration of decay of Fourier 
variables for large -k), and were swept downstream (although, after t = 3, the 
accuracy of the results is open to question). After t = 4.25 a very sharp minimum 
in wall shear distribution began to develop quickly, associated with a further lack 
of decay of the Fourier variables as k +- 00. In general there seem to be two ‘danger 
periods’ when breakdown is likely. For h = 10, the first occurs around t = 3 and is 
the less ‘dangerous’ (our h = 7.5 results showed little sign of any breakdown/oscil- 
lation around this time). The second ‘danger period’ is close to t = 4.5. This type of 
behaviour is clearly a nonlinear phenomenon, and cannot be described by the 
linearized theory of the previous section. 

The final supersonic example tackled was h = 1, /3 = 4, using grid 11. This 
corresponds to a rather faster wall oscillation than the previous examples. The results, 
shown in figure 7 (a,  b ) ,  indicate that the perturbation-wall-shear distributions are 
almost symmetrical about X = 0, whilst the pressure distributions are practically 
antisymmetric about X = 0. These observations may be explained using I (although 
I was concerned primarily with incompressible flows, it is a trivial matter to extend 
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FIGURE 7. (a) Spatial distribution of perturbation wall shear; ( b )  spatial distribution of 
perturbation pressure: h = 1, B = i, supersonic case. 

these results to supersonic flows, simply by replacing (1.8) with (1.9)). This yields, 
as /3+0 (assuming the transient solution has decayed) 

(4.5) 
P = hFx + O( /P), 

= { - @fXx eiWn) + c.c.} + 0(p3) ,  
where 

F ( X ,  t )  = f ( X )  eit + c.c., 
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and ‘c.c. ’ denotes a complex conjugate. For the particular example of (4.2), these 
give 

- 2hX 
sint+O(p) ,  

(l+x2)2 
P =  

Comparison of the computed pressure distribution with (4.6) shows good agreement. 
The agreement between the computed and asymptotic wall shears is less good, 
although if we compare figure 3(a) with figure 7 ( a ) ,  then there is a definite trend 
towards (4.7). This slower approach of the shear towards its asymptotic value is 
caused, presumably, because (4.7) is a second-order (0( p)) term, whilst (4.6) 
represents a leading-order (O(1)) term. 

4.2. Incompressible case 
The first incompressible example tackled was for h = = 1. First the (fine) grid I 
was used. However the computation failed to converge a t  t x 5 ,  and the calculation 
was then halted. Figure 8 (a ,  b) shows (solid lines) perturbation wall shear and pressure 
distributions at three times before this failure occurred. The solution showed no real 
signs of problems just prior to failure, except for a number of mild spatial and 
temporal ‘ripples’ for I XI large. A second computation was then carried out using 
the coarser grid 11. At t = ?iz there was agreement to within 1 % of the grid I results; 
at t = K, the agreement was less satisfactory, with the grid I1 solution developing some 
moderate oscillations for I XI B 1 ; at t = in this (grid 11) solution exhibited general 
large-scale oscillations, and the computation ultimately failed at t = 5 (again). This 
type of behaviour strongly suggested that numerical difficulties were being en- 
countered (dependent partly on mesh size). The nature of this failure was quite 
different from that observed in the large-h supersonic examples, in which oscillations 
and rapid solution growth occurred over a more localized region. 

At first it was thought that these difficulties might be associated with the 
fast-Fourier-transform routine, and so next the linearized solution was generated 
using both grids. The departure of these grid I results from the nonlinear solution 
is shown as broken lines on figure 8(a,b).  Again, with grid I after t = in spatial and 
temporal oscillations started to occur for I X I % 1 ,  initially very mild in nature, but 
increasing in magnitude with time. Using the coarse grid 11, oscillations started to 
occur a t  t = 2 (much earlier than on grid I), which again increased in strength with 
time. These results thus eliminated the possibility that the difficulties were caused 
(directly) by the fast-Fourier-transform routine, and so we must find an alternative 
explanation for these difficulties. 

In  an attempt to gauge the effect of the start-up process on the solution, we next 
considered the following distortion : 

sin ( t )  
O < t < $ r ,  

F ( X , t ) =  I- 1 + F ’  
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FIGURE 8. (a) Spatial distribution of perturbation wall shear; (b)  spatial distribution of 
perturbation pressure: h = /3 = 1 ,  incompressible case. 
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with again h = B = 1. As t + a, the solution should approach the steady state. Grid 
I was used to compute both the nonlinear and linear solutions, and figure 9 shows 
the time variation of the perturbation wall shear, at specified X stations, for the 
nonlinear case (the linearized results were very similar). It is apparent that, even 
though B > BC, the start-up process is triggering unstable modes, which give rise to 
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FIGURE 9. Time variation of perturbation wall shear h = /I = 1 
(distortion 4.8, nonlinear results). 

downstream-growing waves. This feature was common to both the linear and 
nonlinear cases (we shall later see an additional mechanism in the nonlinear case that 
can also trigger unstable modes). However, for fixed X, these waves do become 
smaller in amplitude with time, indicating the eventual formation of the steady state. 
As might be expected, the further downstream the station, the slower this approach 
to the steady state. This nonlinear computation (also) failed at  t = 5 in a manner 
similar to that for the sinusoidally time-varying distortion. Consequently we conclude 
that this failure of the scheme is related to the start-up process, which triggers all 
(time) modes, in addition to that mode corresponding to the hump oscillation. 

It is interesting to observe the nature of the transformed solution; in figure 10(a, b )  
the distributions of Re ( - A * )  at t = 4.57 are shown for the nonlinear and linear 
calculations respectively. These distributions are typical of all transformed quantities 
at this (and neighbouring) timesteps. Particularly noticeable (in both cases) are the 
extremely rapid and large oscillations of the distributions. Comparing the nonlinear 
to the linear results, from k = 0 up to k = -3.25, the two sets are very similar; 
in both cases the maximum amplitude is attained at  around k = -2.5, this being in 
agreement with figure 2, which suggests that the maximum growth rate for the 
linearized case, corresponding to the minimum of Im ( k ) ,  will also occur at k = - 2.5 
(a measure of the decay/growth of disturbances is given by the distance of the roots 
on figures 1 and 2 from the real axis - the greater this distance, the greater the 
decay/growth rate). 

Further understanding of the start-up process may be obtained from studying the 
linearized problem, using essentially the same techniques as in $2, except here we 
consider more general time variations of F ( X ,  t )  (including impulsively started forms), 
rather than purely oscillatory forms. To do this we first take the double Fourier 
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Re ( - A * )  

FIQURE 10. Re( -A*)  distribution, h = B = 1 ,  distortion (4.8), 
t = 4.57. (a) nonlinear case, (b)  linearized case. 
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FIGURE 11. Roots of (4.13), k prescribed, incompressible case. 

transform of (2.2), where 
m o o  

$"*(k, w )  = J-, F ( X ,  t )  ePikXpiot dt dX, 

?(X, Y, t )  e-ikX-iwt dt dX, 

giving the following equation for 7"** : 

(4.9) 

(4.10) 

(4.11) 

The solution of this may be simply inferred from (2.7), giving 

ik(k2)thf**(k,w)Ai 
?** = (4.12) 

(ik)i(k2):jm 
o(ik)f/B'k 

We now consider the locations of poles of this expression, namely roots of the equation 

(4.13) 

However, this time we take a slightly different approach to the problem from that 
used before, namely: given a value of k (real), what is the corresponding value(s) of 
w / P  ? We may allow w/p" to be complex. The variation of the roots of (4.13) is shown 
in figure 11. For each value of k (negative and real) there appears to be just one value 
of w / p .  The crucial point is again the cross-over of the real axis. Indeed, from figure 2 
we may have inferred that this would occur, at wlp" = 1/&, k = k,. We now invoke 
similar arguments to those used earlier, in the inversion of (for example) ?**(k, Y, w ) ,  
to obtain 7"*(k, Y, t )  (this being the quantity computed in the numerical method). For 
t < 0, we must have a trivial solution for all perturbation quantities, assuming the 
distortion is introduced at t = 0. For t > 0 we would ordinarily expect to take a 
contour lying completely within the upper half-plane of the complex-w-plane. 
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However, we see that, for k < k,, the root w,(k) is such that Im{,LI/o$} > 0, implying 
Im [w,} c 0, and so the inversion contour must be diverted into the lower half of the 
complex-o-plane to include the corresponding pole at  w = w,. Thus at each value of 
k, k < k,, 7"* includes a, factor eioo(k)t, such that Im{w,} < 0. Further, since it is 
52, = wo/$ that is the important dependent variable, more specifically we may write 
the discrete contribution to the perturbation wall shear 7": symbolically as 

where we suppose B,(k) = Qr(k)-iQi(k), (4.15) 

such that Qi(k) > 0 for lk,l < ( k I  < 00. (4.16) 

We then have that 

(4.17) 

is the growing contribution to the (physical) quantity Fw. As t +- 00, - co < k < k,, 
(4.14) grows (exponentially) and also oscillates increasingly rapidly. To determine an 
asymptotic estimate for (4.17) we write 

(4.18) 

where G(k) = H(k)/Q;(k). Here we expect 52i(k) to be a complex monotonic function 
of k, - co < k < k,. Integrating (4.18) once by parts, we obtain 

[ G(k eif2,(k,),Pt+ikcX +O(t-2) 1 +discrete Re 
$t 

(4.19) 

provided I Q r ( k c ) P I  IkcXI. (4.20) 

Equation (4.19) indicates that, for fixed X, the transient solution, which causes 
numerical difficulties, decays with time (at least in the linearized case). When 
52,(k,) $t = - k, X then we obtain the (increasing-amplitude) wave packet as seen in 
figure 9 (the position of the wave being in fair agreement with this expression. 

Thus in spite of the increasingly large and rapid oscillations of the solution in k-space, 
the physical solution is generally well behaved, except near the wave packet, which 
is propagated downstream. However a stage is reached (dependent on the spacing 
of the k-points), where the quadrature scheme used to invert the transformed solution 
is unable to treat these oscillations accurately, and this eventually results in the 
erroneous oscillations in our physical solutions. Because of the multiplicative $ in 
the exponential term of (4.18) as P + O ,  these difficulties are likely to develop more 
slowly as ,LI decreases. The difficulty in obtaining even a steady-state solution of this 
kind, via any time-marching process was envisaged by Smith (1984). 

Although this fully explains the difficulties encountered in the linearized case, it 
does not explain directly the eventual lack of convergence of our nonlinear compu- 
tations. To gain some clues to this, let us return to our comparison of figure 10 (a, b). 
Beyond k = -3.25 the linearized distribution (figure lob) becomes negligible; the 
nonlinear distribution (figure lOa), however, exhibits a further peak in amplitude 
(somewhat smaller than the previous peak) at around k = -5, and a third (smaller) 
peak at around k = -7.5. This indicates that the nonlinearity is causing a rapid 
growth of higher-order modes. Inspection of distributions at earlier times (not 
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presented here) reveals that these modes grow very rapidly in time. There appears 
to be several possible explanations for the eventual failure of the nonlinear calculation 
to converge. The first is that the fast-Fourier-transform routine (which is in essence 
a trapezoidal quadrature) is unable to handle these increasingly larger and more rapid 
oscillations accurately. A second possible explanation is that downstream-growing 
waves triggered in the start-up process are culminating in a breakdown of the 
governing equations, perhaps similar to the type found in the large-h supersonic 
examples. A further related possibility (kindly pointed out by a referee) is that the 
higher-frequency modes will be the fastest-moving modes, and consequently will 
appear downstream sooner. Indeed, during the early stages of the computations, there 
were some signs of quickly moving (but extremely small-amplitude) ripples, which 
were fairly sensitive to grid size. As the k-grid is refined, progressively higher-frequency 
modes will be incorporated into the calculation, which will be propagated downstream 
with increasing wavespeed. Here a recent paper by Smith & Burggraf (1985) may 
be relevant, in which a treatment of high-frequency disturbances on a Blasius 
boundary layer was studied. Far downstream it was shown that flow disturbances 
ultimately become governed by the Benjamin-Ono equation, or at  higher frequencies 
by the full Euler equations, involving probable bursts of vorticity from a viscous 
sublayer. 

Let us now return to considering sinusoidal time-varying distortions. (Notice that 
figure 8 (a, b) just shows remnants of the transient waves described above at  t = in, 
X = 5 . )  In  particular we shall be interested in the effect of nonlinearity on the 
time-periodic solution. It is rather difficult to quantify this on results of this kind; 
however, we chose to trace the downstream development of a single maximum (‘ crest ’) 
or minimum (‘trough ’) in the pertur bation-wall-shear distribution (we could equally 
well have chosen any other physical quantity), these ‘troughs’ and ‘crests’ being 
wavelike in nature. Figure 12 shows just such a development for a number of different 
values of h; here all magnitudes are normalized with respect to - I h 1. All results on 
this figure were obtained using the fine grid I, and all relate to /3 = 1. 

The first set of results (denoted by the symbol 0 )  is for the linearized case. 
Associated with each symbol is the corresponding time. Although we cannot be 
completely sure how the transient solution affects these distributions (as noted earlier 
the computation for this case became unreliable before one complete cycle of hump 
oscillation had been completed), the decaying nature of the wave downstream 
indicates that transient terms are likely to be of secondary importance. This decay 
downstream is in line with our linearized analysis in $2, for this choice of /3, and adds 
further credibility to our numerical results. 

Let us now turn for comparison to nonlinear results. Symbol A shows the 
development of a wave trough for h = 1. Although the magnitude initially decays, 
after X = 5.5 (corresponding to t = 3.705), the wave magnitude begins to grow. Now 
it is difficult to be completely conclusive about this feature, partly because of the 
uncertainty regarding the decay of the transient solution, and partly because the 
computation became unreliable owing to increasingly large oscillations (and ulti- 
mately failed) soon after the last timestep shown. All the results shown in figure 12 
are at times before the computation became noticeably unreliable. For h = 1, these 
results strongly suggest that nonlinearity has a generally destabilizing effect on the 
flow. Although in this example = 1 > pc, supercritical modes appear to be triggered 
through nonlinearity, resulting in a wave-amplitude growth downstream. 

Since is was not possible to investigate the expected following wave ‘crest ’ in the 
wall-shear-perturbation distribution, instead we next took h = - 1, and the symbol 
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FIQURE 12. Development of perturbation wall shear; maximum wave magnitude (normalized with 
respect to - 1 h I), B = 1 : 0,  linear case; A, h = 1 (nonlinear case); V, h = - 1 (nonlinear case); 
0, h = 4 (nonlinear case). Numbers associated with each symbol denote time. 

V shows the development of the wave ‘crest’ corresponding to the ‘troughs’ in the 
previous two examples. The amplitude is seen to decay with X (and t )  up to a t  least 
X = 6.5, nonlinearity enhancing this decay slightly when compared to the linear 
results . 

As a final example for B = 1 we took h = ?j, and results for the shear trough are 
indicated on figure 12 by the symbol 0. As in the h = 1 nonlinear example the 
amplitude decays before seeming to grow. Again a note of caution is in order here 
because of the difficulties with the reliability of the solution (this particular 
computation eventually failed at t = 5.5). The station where the turnaround from 
decay to growth occurs (akin to a neutrally stable point) has moved downstream (to 
X x 6.5) when compared to the h = 1 nonlinear results. This trend was confirmed 
by other results (not presented here), for other choices of h. This trend seems 
physically realistic ; as h -+ 0 the nonlinear solution will approach the linearized 
solution, i.e. will decay further and further downstream before the unstable modes 
eventually become significant and lead to a growth in the solution. 

The final case presented for which p > BC, is the nonlinear example for h = 1, 
/3 = 0.7, and figure 13 shows the development of a wave ‘trough’ in the perturbation- 
wall-shear distribution (obtained on grid I). This clearly shows a growing wave 
downstream for this frequency of oscillation, which according to linearized theory 
should be subcritical. The linearized solution was also generated in this grid, and these 
results (not shown) produce a decaying solution downstream, in line with our theory 
of $2. The nonlinear results, then, indicate that nonlinearity can trigger unstable 
solution modes for /3 > BC. As expected from (4.17), the computation for this smaller 
value of /3 proceeded for a longer time than the p = 1 case, before the computation 
became unreliable and failed. 

We next turn our attention to a value of p which, according to linearized theory, 
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FIQURE 14. Development of perturbation wall shear: maximum wave magnitude (normalized with 
respect to h),  = 0.4: 0, linear case; A, h = 1 (nonlinear case); V, h = 4 (nonlinear case); 0, 
h = (nonlinear case). Numbers associated with each symbol denote time. 
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should be slightly supercritical, namely 8” = 0.4 (p = 0.63). In  particular we shall 
investigate the effect of nonlinearity by again focusing on the development, down- 
stream, of a single maximum/minimum in the perturbation-wall-shear distribution. 
The results are shown in figure 14 (where the amplitudes of the wave are normalized 
with respect to h). All results were obtained on grid I. Because these calculations 
remained reliable for much longer than the /? = 1 examples, we are able to show both 
a wave ‘trough’ and the following wave ‘crest’. 

The symbol 0 denotes the linearized results. These confirm the slightly supercritical 
nature of the flow, as predicted by our linearized theory in $2, and provide a (partial) 
check on our numerical method (although it does not, of course, check our computation 
of the nonlinear terms). Notice that the difference in magnitude between the ‘troughs ’ 
and ‘crests’ gives us a fairly good indication of the effect of transient terms on the 
solution as the ‘fully developed’ linearized solution would have ‘troughs and crests’ 
of the same magnitude, separated by x in time, at the corresponding X-station. 

The remainder of the results on figure 14 are nonlinear. It has been shown by Smith 
( 1 9 7 9 ~ )  that, for very slightly supercritical disturbances (which are small on the scale 
of the lower deck, i.e. h+O), nonlinearity has a stabilizing influence on the solution. 
We next seek to confirm these results from weakly nonlinear-stability theory. 

= 0.4 and h = 1 , 4, a are denoted by the symbols A, V and 
0 respectively on figure 14. A number of observations are immediately apparent. 
The effect of nonlinearity on the negative perturbation wall shear is generally to 
increase its magnitude, compared with the linearized case (i.e. a generally destabilizing 
influence). On the other hand, its effect on the ‘crests’ is generally to reduce their 
magnitude somewhat (i.e. a stabilizing influence), although there was some evidence, 
albeit rather inconclusive, that far enough downstream the wave crests would also 
eventually grow in amplitude. Interestingly enough, this is the reverse of the usual 
effect of nonlinearity in steady flows. 

The stabilizing effect of the nonlinearity on wave ‘ crests ’ in the shear distributions, 
as seen in the nonlinear results of figure 14, is in broad qualitative agreement with 
the weakly nonlinear predictions of Smith ( 1 9 7 9 ~ ) .  The correlation between this theory 
and the effect of nonlinearity on the wave ‘troughs’ of the perturbation wall shear 
is not quite so clear, and requires rather closer observation and interpretation of the 
results. In  the nonlinear case of h = 1 the ‘trough’ magnitude is seen to increase 
continuously; in the case of h = a the wave ‘trough’ initially decays in amplitude 
before ultimately growing. The results for h = are initially very similar to those 
expected from linearized theory, although, once the wave starts to grow, its growth 
is much more rapid than the linearized case, presumably because of the growth of 
higher-order modes triggered through the nonlinear interaction. 

Perhaps the most interesting case shown is that of h = f. This indicates that 
initially the wave is practically of constant amplitude (with less ‘dip’ in magnitude 
than observed in the linearized case) before the amplitude begins to grow. We may 
surmise that this amplitude plateau is related to the predictions of weakly nonlinear 
theory (although quantitative comparison is difficult). 

The situation regarding slightly supercritical values of /? (according to linearized 
theory) is then as follows: in the linear case, the wave amplitudes are seen initially 
to decay downstream, before growing, with the position of the neutral point moving 
further downstream as /3+/?, (from below). The particular details of this changeover 
from decay to growth will be partly determined by the distortion shape under 
consideration. In  the case of ‘crests’ in the wall shear distribution, nonlinearity 

Nonlinear results for 
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tends to reduce wave amplitudes (at least in the early stages of the development), 
with obvious parallels with weakly nonlinear theory. In the case of ‘troughs’ non- 
linearity tends to increase wave amplitudes. However if /3-/3, is small and the magni- 
tude of h is chosen appropriately relative to /3-/3, (according to Smith 1979a, 
h = O(l /3-pc It)), then the effect of nonlinearity seems to ‘level out’ the dip in ampli- 
tude observed in the linearized case. If h is too small relative to /3-BC, then the effect 
of nonlinearity is insufficient, and the solution takes on more of the linearized form, as 
evidenced by the h = a results on figure 14. If h is too large relative to /3-BC, then 
nonlinearity dominates and leads to a continuously growing ‘trough ’ amplitude; this 
is illustrated by the h = I nonlinear results on figure 14. For weakly nonlinear results 
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1 
FIGURE 15. Spatial distribution of perturbation wall shear h = 1, 

= 4. (a, b )  linear results; (c, d)  nonlinear results. 

to apply, h must be chosen correctly. For = 0.4, of the three values of h 
investigated, h = + appears to give the flattest amplitude plateau. Further down- 
stream higher-order modes take effect and the solution eventually grows in amplitude 
(see also the comments of Smith 1984). Overall it is perhaps a little misleading to 
interpret the effect of nonlinearity as being a stabilizing influence because of the 
manner in which the amplitude plateau forms in the case of ‘troughs’ in the wall- 
shear distribution. However, our analogy with the homogeneous (i.e. stability) 
problem is not perfect, as here we are exciting all values of k, rather than just a single 
value. Finally, although we have concentrated solely on waves arising in the 
perturbation-wall-shear distribution, we could have equally well have focused our 
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FIGURE 16. (a, b)  Spatial distribution of perturbation wall shear; (c, d)  spatial 
distribution of pressure : h = 1, B = (nonlinear results). 
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attention on any of the other physical quantities evaluated, which all exhibit similar 
wave-like forms in their distributions. 

We conclude this section with results from two further examples that are 
supercritical according to linearized theory. Figure 15 (a, b) shows the linearized 
perturbation-shear distributions at the wall for h = 1, /3 = f (obtained on the coarser 
grid 11), whilst figure 15(c, d )  shows the corresponding nonlinear results (obtained 
using grid I). The growing-amplitude waveforms are clearly visible in both cases. The 
linearized results again give us an estimate for the effect of the transient solution by 
comparing the magnitude of the solution at time steps x apart (this appears to be 
fairly negligible). The effect of nonlinearity is observed to be broadly as before, namely 
of tending to reduce the amplitude of the perturbation-wall-shear wave crests, but 
generally amplifying the troughs. This nonlinear calculation failed at t x 11.68, in 
the manner described for the previous examples. Further, these nonlinear results were 
checked using a control computation on grid 11. Up to around t = !jx the two sets 
of results agree to graphical accuracy, although at this time the control computation 
did show initial signs of oscillating far upstream. By t = 3x this discrepancy had 
grown to around 10 % and even the grid I results were showing signs of oscillation. 
The control computation again failed at  about the same time as the grid I calculation. 

The final example computed was for h = 1,  /? = a. The (nonlinear) results obtained 
on grid I are shown in figure 16(a,b) (perturbation wall shears) and figure 16(c,d) 
(pressures). Although downstream-growing waves are being created, compared with 
the previous set of results (for /3 = 4) these waves are rather smaller in amplitude, 
and are of rather smaller wavelength; additionally, the waves grow rather more slowly 
than in the /3 = t case. These trends are confirmed by the linearized analysis in $2. 
It is likely, however, that the transient solution will still be quite significant, because 
of the smallness of p. 

For this class of distortion, as p+O, I predicts 

+O(P), 
h(Xa - 1)  sin t 

( 1  + x2y P =  (4.21) 

(4.22) 

(correcting a sign error in I). From upstream, up to around X = 1, comparison of 
figures 15 and 16 does confirm a trend towards these results, although the results of 
I can give no indication of the creation of the growing waves, which as /3+0 only 
become significant far downstream. This computation showed no signs of failure 
before the calculation was terminated (t x 3n), but we believe that, had the 
computation proceeded further, failure would eventually have occurred. Here again, 
the far-downstream, high-frequency analysis of Smith & Burggraf (1985) may be 
relevant. 

5. Conclusions 
By studying the fully nonlinear problem (1.6) we have obtained results for the 

nonlinear-(incompressible-)boundary-layer-stability problem, somewhat further 
from neutral points on the lower branch than is given by weakly nonlinear theory. 
Our results indicate that, in general, nonlinearity has destabilizing effect on boundary 
layers, whilst at the same time we believe we have confirmed certain of the predictions 
of weakly nonlinear-stability theory, although this does require very careful choice 
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of parameters. The general effect of this nonlinear destabilization is illustrated for 
choices of j3 greater than pc (the critical value according to linearized theory) for which 
the flow disturbances ultimately appear to grow downstream, although it is difficult 
to assess the terminal behaviour of these (or indeed of any of the growing) solutions 
far downstream. 

Our numerical scheme does experience difficulties, due primarily to the start-up 
process of the hump movement, which always triggers all time modes (including 
unstable modes), even in the linearized case, and leads to an increasing-amplitude 
wave packet downstream. Although this is a restriction on the method, it is likely 
that conventional (i.e. finite-difference) schemes would experience alternative diffi- 
culties as a result of this growing start-up wave, presumably at large distances 
downstream of the distortion. 

For the supersonic case none of these difficulties exist, all modes of disturbance 
seem to decay downstream, and our numerical scheme yields solutions (including 
those with reversed flow) simply and efficiently. However, for sufficiently large 
humps, what appears to be a Rayleigh type of instability can occur, owing to non- 
linear effects entirely, culminating in a breakdown of the governing equations, with 
the result that our numerical scheme then becomes ill-posed. Conventional finite- 
difference schemes also face the same difficulties under similar circumstances (see 
Duck 1985). Presumably there exists an envelope (in (h,B)-space) inside which such 
a breakdown develops. For /3 = 1, for the particular choice of distortion taken, the 
critical value of h lies between 7.5 and 10. 

There is every reason to suspect that the same phenomenon will occur in the 
incompressible case for large enough h (at least within a range of B). However, because 
of the difficulties involved with the TollmienSchlichting instability in this case, it 
would appear to be quite a difficult numerical task to generate such an effect 
(although, as suggested in the previous section, just such a breakdown may be caused 
by the start-up process). 

To conclude, these results indicate (at least in this problem) an intimate 
relationship between the phenomena of TollmienSchlichting instability, (probable) 
Rayleigh-type instability, and unsteady (and sometimes catastrophic) separation, 
with all these effects being observed within the single framework of the triple-deck 
model. 

The author wishes to thank the referees whose penetrating comments and 
suggestions did much to improve this paper. This work was partially supported by 
NATO Grant 523/82. 

REFERENCES 

BOQDANOVA, E. V. & RYZHOV, 0. S. 1983 Free and induced oscillations in Poiseuille flow. &. J .  
Mech. Appl. Matha 36, 271. 

BUROQRAF, 0. R. & DUCK, P. W. 1981 Spectral computation of triple deck flows. In Proc. Symp. 
Phya. Num. Aapecta in Aerodyn. Flows, California State Univeraity, Long Beach. Springer. 

COOLEY, J. W. & TUKEY, J. W. 1965 An algorithm for the machine computation of complex 
Fourier series. Math. C m p .  19, 297. 

DANIELS, P. G. 1974 Numerical and asymptotic solutions for the supersonic flow near the trailing 
edge of a flat plate at incidence. J .  Fluid Mech. 6 3 ,  641. 

DUCK, P. W. 1978 Laminar flow over a small unsteady hump on a flat plate. Mathematika 25,24. 
DUCK, P. W. 1981 Laminar flow over a small unsteady three-dimensional hump. 2. angew. Math. 

Phya. 32, 62. 



498 P. W .  Duck 

DUCK, P. W. 1984 The effect of a surface discontinuity on an axisymmetric boundary layer. 

DUCK, P. W. 1985 Pulsatile flow through constricted or dilated channels: Part 11. &. J. Mech. Appl. 

DUCK, P. W. & BURQQRAF, 0. R. 1985 Spectral solutions for three-dimensional triple-deck flow 

JOBE, C. E. & BURQQRAF, 0. R. 1974 The numerical solution of the asymptotic equations of 

LIN, C. C. 1955 Theory of Hydrodynamic Stability. Cambridge University Press. 
RIZZETTA, D. P., BIJRQQRAF, 0. R. & JENSON, R. 1978 Triple deck solutions for viscous supersonic 

and hypersonic flow past corners. J. Fluid Mech. 89, 535. 
RYZHOV, 0. S. & ZHUK, V. I. 1980 Internal waves in the boundary layer with the self-induced 

pressure, J. Mic. 19, 561. 
SMITH, F. T. 1973 Laminar flow over a small hump on a flat plate. J. Fluid Mech. 57, 803. 
SMITH, F. T. 1979a Nonlinear stability of boundary layers for disturbances of various sizes. Proc. 

SMITH, F. T. 19798 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. 

SMITH, F. T. 1984 Theoretical sspects of steady and unsteady laminar separation. A.I.A.A. paper 

SMITH, F. T. & BURQQRAF, 0. R. 1985 On the development of large-sized short-scaled disturbances 

STEWARTSON, K. & WILLIAMS, P. G. 1969 Self induced separation. Proc. R. Soc. Lond. A 312,181. 
STUART, J. T. 1960 On the non-linear mechanics of wave disturbances. Part 1 .  The basic behaviour 

in plane Poiseuille flow. J. Fluid Mech. 9, 353. 
TERENTEV’EV, E. D. 1978 On an unsteady boundary layer with self-induced pressure in the 

vicinity of a vibrating wall in a supersonic flow (in Russian). Dokl. Akad. Nauk SSSR 240, 
1046. 

TUTTY, 0. R. & COWLEY, S. J. 1985 Stability and numerical solution of the unsteady interactive 
boundary-layer equation J. Fluid Mech. (in press). 

VELDMAN, A. E. P. 1979 The calculation of incompressible boundary layers with strong viscous- 
inviscid interaction. Rep. NLR-Tr 79023 Nat. Aerosp. Lab., Netherlands. 

WATSON, J. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel 
flows. Part 2.  The development of a solution for plane Poiseuille flow and Couette flow. J. Fluid 
Mech. 9, 37 1 .  

WILLIAMS, P. G. 1975 A reverse flow calculation in the theory of self-induced separation. In  Proc. 
4th Intl Conf. Num. Meths in Fluid Dyn. Lecture Notes in Physics, vol. 35, p. 445. Springer. 

ZHTJK, V. I. & RYZHOV, 0. S. 1978 On one property of the linearized boundary-layer equations 
with a self-induced pressure (in Russian). Dokl. Akad. Nauk SSSR 240, 1042. 

Q. J .  Mech. Appl. Matha 37, 57. 

Mat& (in press). 

over surface topography. J. Fluid Mech. (in press). 

trailing-edge flow. Proc. R .  Soc. h n d .  A 340, 91. 

R. SOC. Lond. A 368,573. See also Proc. R .  Soc. Lond. A 371,439. 

Lond. A 366,91. 

84-1582. 

in boundary layers. Proc. R .  SOC. Lond. (in press). 


